1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 沪ICP备12018245号
福州大学数学与计算机科学学院计算机图形学与多媒体/人工智能研究生导师夏又生介绍如下:
基本信息
姓名 夏又生
职称 教授
职务 博士生导师
主讲课程 数值计算方法,人工神经网络,神经动力学优化算法及应用,神经计算原理及应用
研究方向 智能计算与模式识别
办公室 数计学院2号楼106
电子邮件 ysxia@fzu.edu.cn
联系电话 0591-22865171
个人简介
研究兴趣:图像配准与融合,盲图像恢复与重建,图像超分辨,随机优化算法
讲授课程
本科生:数值计算方法,人工神经网络等
硕士生:神经动力学优化算法及应用,神经计算原理及应用
主持科研项目
(1) 基于广义约束最小绝对偏差估计的盲图像恢复神经网络算法,国家自然科学基金面上项目,2009.1-2011.12。
(2) 有色噪声下基于噪声约束最小均方估计的语音增强算法, 国家自然科学基金面上项目,2012.1-2015.12。
获奖
基于优化的非线性系统智能建模与控制,2010年高等学校科学研究优秀成果奖自然科学奖二等奖(排名第二)
主要论文
1.系统参数辩识与语音增强研究工作
[1] 夏又生, Z.P. Deng,X. Zheng, Analysis and application of a novel fast algorithm for 2-D ARMA model parameter estimation, Automatica, vol. 49, pp 3056-3064, 2013.
[2] 夏又生, M. Kamel, and H. Leung ,A Fast Algorithm for AR Parameter Estimation Using A Novel Constrained Least Squares method,Neural Networks, vol. 33, pp. 396-405, 2010.
[3] 夏又生 M. Kamel, A generalized least absolute deviation method for parameter estimation of autoregressive signals, IEEE Transactions on Neural Networks,vol.19,107-118, 2008 .
[4] Y.S. Xia, L. Henry, and N. Xie ``A New Regression estimator with neural network realization", IEEE Transactions on Signal Processing, vol. 53, pp.672-685, 2005.
[5] 陈志庆, 夏又生,A Fast Algorithm For Vector ARMA Parameter Estimation, International Conference on Electrical and Engineering and Automatic Control, vol. 3, pp178-181, Zibo, China, 2010.
[6] 夏又生, 俞颖, Speech Enhancement Using Generalized Least Absolute Deviation Estimation,International Conference on Audio, Language and Image Processing,vol. 1, pp. 64-68, Shanghai, China, 2010 .
2. 数据融合研究工作:
[1] 夏又生 and H. Leung,Performance analysis of statistical optimal data fusion algorithms, Information Science, 2014.
[2] 夏又生 and H. Leung,A Fast Learning Algorithm for Blind Data Fusion Using A Novel L2-Norm Estimation,IEEE Sensors Journal, vol.14, pp. 666 – 672, 2014.
[3] 夏又生 M. Kamel, Cooperative learning algorithms for data fusion using novel L1 estimation, IEEE Transactions on Signal Processing, vol. 56, 1083-1095,2008 .
[4] 夏又生 and M. Kamel, A Measurement Fusion Method for Nonlinear System Identification and Its Cooperative Learning Algorithm , Neural Computation, Vol. 19, pp. 1589-1632, 2007.
[5] 夏又生, Leung H, Nonlinear spatial-temporal prediction based on optimal fusion, IEEE TRANSACTIONS ON NEURAL NETWORKS , vol. 17 , 975-988 Published: 2006
3. 图像恢复与重建研究工作
[1] 夏又生,Sun C., and Zheng WX, A Discrete-Time Neural Network for Fast Solving Large Linear L1-norm Estimation Problems and its Application to Image Restoration, IEEE Transactions on Neural Networks and Learning Systems, vol.23 , pp. 812 - 820 , 2012
[2] 石泉斌,夏又生*,Fast multi-channel image reconstruction using a novel two-dimensional algorithm, Multimedia Tools and Applications , vol. 63, Feb, 2013 online Published。
[3] 夏又生, Z.P. Deng,X. Zheng, Analysis and application of a novel fast algorithm for 2-D ARMA model parameter estimation, Automatica, vol. 49, pp 3056-3064, 2013.
[4] 夏又生 and M. Kamel, Novel cooperative neural fusion algorithms for image restoration and image fusion, IEEE Transactions on Image Processing, vol. 16, pp. 367-381, 2007 .
[5] 夏又生, A fast algorithm for constrained GLAD estimation with application to image restoration, Proceeding of World Congress on Intelligent Control
and Automation, July, Jinan, China, pp.729-734,2010.
[6] 庄金莲,夏又生, An Improved Regularization Approach for Blind Restoration of multichannel Imagery,International Congress on Image and Signal Processing,上海,2011年10月。
[7] 文虎儿, 夏又生, A SIFT operator -based Image Registration Using Cross-Correlation Coefficient, International Congress on Image and Signal Processing,上海,2011年10月。
4.智能优化算法的研究工作
[1] 夏又生, 陈天平,J. Shan,A novel iteration method for computing generalized inverse,Neural Computation, vol.26, pp. 449-465 , 2014
[2] 夏又生, A Compact Cooperative Recurrent Neural Network for Computing General Constrained L-1 Norm Estimators,IEEE Transactions on Signal Processing, vol.57, pp. 3693-3697,2009。
[3] 夏又生, G. Feng, and J. Wang, ``A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints”, IEEE Transactions on Neural Networks, vol.19,1340-1353, 2008
[4] 夏又生and M. Kamel, ``Cooperative Recurrent Neural Networks for solving L1 estimation problems with general linear constraints," Neural Computation, vol. 20, pp.844-872, 2008.
[5] 夏又生, New cooperative recurrent neural networks for solving constrained variational inequality problems, Science in China: Information sciences, vol.52, 1766-177, 2009.
[6] Sun C., 夏又生, An analysis of a neural dynamical approach to solving optimization Problems,IEEE Transactions on Automatic Control,vol. 54, pp. 1972-1977,2009.
[7] 夏又生and G. Feng, ``A New Neural Network for Solving
Nonlinear Projection equations," Neural Networks, vol. 20, pp. 577-589, 2007.
[8] 夏又生, G. Feng, and M. S Kamel, Development and analysis of neural dynamical approaches to solving nonlinear programming problems, IEEE Transactions on Automatic Control, Vol 52, pp. 2154-2159, 2007.
[9] 夏又生, G. Feng, and J. Wang, ``A Primal-Dual Neural Network
for On-Line Resolving Constrained Kinematic Redundancy," IEEE Transactions on Systems, Man and Cybernetics - Part B, vol. 35, pp. 54-64, 2005.
[10] 夏又生, ``An extended projection neural network for constrained optimization", Neural Computation, vol. 16, no. 4, pp. 863-883, 2004.
[11] 夏又生, ``Further results on global convergence and stability of globally projected dynamical systems," Journal of Optimization Theory and Applications, vol. 122, pp.627-149, 2004.
[12] 夏又生 and F. Gang, ``On Convergence Rate of Projection Neural
Networks," IEEE Transactions on Automatic Control, vol.
49, pp. 91-96, 2004.
[13] 夏又生and J. Wang, ``A General Projection neural network for solving monotone variational inequality and related optimization problems", IEEE Transactions Neural Networks}, vol.15, pp. 318-328, 2004.
[14] 夏又生,J. Wang, and L. M. Fork, ``Grasping Force Optimization for Multifingered Robotic Hands Using a Recurrent Neural Network," IEEE Transactions on Robotics and Automation, vol. 20, pp. 549-554, 2004.
来源未注明“中国考研网”的资讯、文章等均为转载,本网站转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性,如涉及版权问题,请联系本站管理员予以更改或删除。如其他媒体、网站或个人从本网站下载使用,必须保留本网站注明的"稿件来源",并自负版权等法律责任。
来源注明“中国考研网”的文章,若需转载请联系管理员获得相应许可。
联系方式:chinakaoyankefu@163.com
扫码关注
了解考研最新消息