1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 沪ICP备12018245号
针对刚刚结束的2013年研究生入学考试的数学科目,老师分析了其试卷特点及考查重点,并提醒2014年的考生针对数学的复习要早作准备。
选择填空题考查灵活,证明题难度降低
李良老师指出,2013年考研数学真题总体来说,考得比以前更加灵活,尤其是选择填空题,但仍属于以前所说重点范围内的考查方式。以前没有太考到过的一些知识点,在2013年的考卷里面体现了出来,例如“数学一”里面,以前也强调过的,像“傅里叶级数”的问题。从整体来说,“数学三”还是在我们所重点要求的范围之内,有些题目还是相对灵活一点,像“数学三”考到了“求极限”的题目,求旋转体的体积问题,计算二重积分问题。证明题也是比较简单的,相对棘手的可能是线性代数部分出题不是太常规,例如线性代数第一个大题,本身就一个解方程的大题,第一个求解方程也是以矩阵方程的形式给出来的,很多同学在遇到这个问题可能不太容易下手,其实最后还是变成方程组的求解问题,这也是常规的。
在“数学三”中已经连续四年都没有考过统计的大题,所以我们在最后上课时提到,四年以后可能统计大题会出现,一般出现的话考的可能性最大的就是参数估计问题,今年正好体现在数学三的试卷里。应该说只要计算问题不是太大的同学,概率论和数理统计不是什么大问题。
“数学一”的题目,因为考查的灵活一点,所以很多同学做小题的时候显得不是特别自信,所以可能做小题会慢一点,单纯是纯计算的问题一般不大涉及。因此还是需要考生有扎实的基础,有分析问题的能力,否则就会做得棘手一点。但从证明题的角度来说,今年的难度是降低了。这一般是考生容易害怕的一类题型,但今年不管是“数学三”还是“数学二”,证明题难度都不是很大,都是比较有套路的证明方式。
但“数学一”也考了级数求和的问题,这是以前在“数学三”中常出现类型的题,“数学一”中直接涉及到,倒不是常规的考法。常规考法是直接去求和,但是这个是需要结合方程的角度去解决,没有练习到位的同学,可能就会觉得比较棘手一点。值得一提的还有“数学一”的22题,之前涉及较少,是属于讨论性的问题,是在90年代初考过的题型,如果对这种问题没有深入搞清楚的话,可能难度会大一点。
综合以上的情况来说,2013年的考研数学倒不是题目难度到底有多大,而是考得更加灵活一点,由于不少同学基础不够扎实,遇到类似题目会觉得难度比较大,学生们在第一时间的反馈也印证了这一点。
扎实基础才能应对灵活的题目
有同学一出考场就和老师说,前面做选择填空做了40分钟左右,发现仍没做完,还有两三个题,心理立刻发慌了,接着再做大题的时候,发现有些会做的题也很不顺手。就此李良老师指出,考场的发挥的确很重要,考前也会反复提醒学生,但最主要的还是扎实基础,才能最大程度地避免这种失误。
对2014年的考生来说,考研数学最重要的还是一个基础问题,数学不可能是一天两天就能练成的。以刚刚结束的2013年的试卷为例,没有一个扎实基础,这套题做起来感觉就会非常棘手,虽然60%左右的题还是属于以前考的常规题型,但是一灵活起来就很麻烦。对2014年考研的同学来说,李良老师建议,还是必须得花三、四个月,或四、五个月的时间,一定要把教材仔仔细细地去过,把每一个知识点都要搞清楚,这才是学数学最需要做的一件事。只要基础扎实了,剩下的其实一切都好办,最后进入强化及冲刺复习阶段时,就会感觉得心应手。但如果前期的工作没到位而依靠后期突击,将会是非常难的一件事情,基本没有可能。
题目虽然很灵活,但基础一旦扎实了,学生其实是能看到它的考点在哪里,解起题来也就能迎刃而解。例如2013年的第20个大题,其实就属于一种矩阵方程的问题,有的同学对直接解方程可能熟悉一点,但是遇到这种矩阵方程就陌生了,平时做得比较少,就找不到思路。小题也是如此,今年都是比较反向的考察,当然比如说像线性代数里面13题考求一个行列式,让考生去求一个A的行列式,很多同学看到它都是感觉比较棘手,这就是基础没到位,通过这个不知道要建立什么关系,其实它考的就是伴随矩阵的问题,因为伴随矩阵里边的元素其实就是我们的代数构成的,那么把这个伴随矩阵的行列式和举证的行列式之间的关系一转换到这儿,大部分的考生都已经知道怎么做了,但是一看到这个条件,可能没法去发挥,就感觉比较棘手。
如果考生对数学分数要求不太高,需要考到100分左右,还是比较容易实现的。但如果目标是更高的分数,就需要扎实的基础,今年有些题目的计算量相对来说大一点,因此李良老师也特别提醒2014年考研的同学注意,运算能力更是平时积累的,不能看看答案就没事了,这需要从现在开始,扎扎实实去提高计算能力,在考场上这些问题才能够被避免,这需要一个长期的过程。
来源未注明“中国考研网”的资讯、文章等均为转载,本网站转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性,如涉及版权问题,请联系本站管理员予以更改或删除。如其他媒体、网站或个人从本网站下载使用,必须保留本网站注明的"稿件来源",并自负版权等法律责任。
来源注明“中国考研网”的文章,若需转载请联系管理员获得相应许可。
联系方式:chinakaoyankefu@163.com
扫码关注
了解考研最新消息