1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 沪ICP备12018245号
完全随机分组设计的资料
一、两组或多组计量资料的比较
1.两组资料:
1)大样本资料或服从正态分布的小样本资料
(1)若方差齐性,则作成组t检验
(2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验
2)小样本偏态分布资料,则用成组的Wilcoxon秩和检验
2.多组资料:
1)若大样本资料或服从正态分布,并且方差齐性,则作完全随机的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。
2)如果小样本的偏态分布资料或方差不齐,则作KruskalWallis的统计检验。如果KruskalWallis的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。
二、分类资料的统计分析
1.单样本资料与总体比较
1)二分类资料:
(1)小样本时:用二项分布进行确切概率法检验;
(2)大样本时:用U检验。
2)多分类资料:用Pearsonc2检验(又称拟合优度检验)。
2.四格表资料
1)n>40并且所以理论数大于5,则用Pearsonc2
2)n>40并且所以理论数大于1并且至少存在一个理论数<5,则用校正c2或用Fisher’s确切概率法检验
3)n£40或存在理论数<1,则用Fisher’s检验
3.2×C表资料的统计分析
1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则行评分的CMHc2或成组的Wilcoxon秩和检验
2)列变量为效应指标并且为二分类,列变量为有序多分类变量,则用趋势c2检验
3)行变量和列变量均为无序分类变量
(1)n>40并且理论数小于5的格子数<行列表中格子总数的25%,则用Pearsonc2
(2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s确切概率法检验
4.R×C表资料的统计分析
1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则CMHc2或KruskalWallis的秩和检验
2)列变量为效应指标,并且为无序多分类变量,行变量为有序多分类变量,作nonezerocorrelationanalysis的CMHc2
3)列变量和行变量均为有序多分类变量,可以作Spearman相关分析
4)列变量和行变量均为无序多分类变量,
(1)n>40并且理论数小于5的格子数<行列表中格子总数的25%,则用Pearsonc2
(2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s确切概率法检验
三、Poisson分布资料
1.单样本资料与总体比较:
1)观察值较小时:用确切概率法进行检验。
2)观察值较大时:用正态近似的U检验。
2.两个样本比较:用正态近似的U检验。
配对设计或随机区组设计
来源未注明“中国考研网”的资讯、文章等均为转载,本网站转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性,如涉及版权问题,请联系本站管理员予以更改或删除。如其他媒体、网站或个人从本网站下载使用,必须保留本网站注明的"稿件来源",并自负版权等法律责任。
来源注明“中国考研网”的文章,若需转载请联系管理员获得相应许可。
联系方式:chinakaoyankefu@163.com
扫码关注
了解考研最新消息