1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 沪ICP备12018245号
分类:导师信息 来源:中国考研网 2015-05-08 相关院校:中国人民大学
何军,计算机工学博士,数据工程与知识工程教育部重点实验室主要研究人员。长期从事数据库与数据挖掘方面的研究,近年主要研究方向为数据挖掘、数据库、信息检索、商务智能、知识工程等,在这个领域积淀了丰富的研究和开发经验。主持和参加了近十项科研项目,其中包括973项目、国家自然科学基金面上项目、国家自然科学基金重大项目、863项目、社科基金重大项目、微软研究院IFP 课题等。与国际上多位知名的教授开展合作研究,近年在国际一流学术期刊和学术会议,如ACM Transactions oInformatioSystems (TOIS)、IEEE Transactions oKnowledge and Data Engineering (TKDE)、DecisioSupport Systems (DSS)、InformatioSystems、InformatioSciences、Computational Intelligence、Knowledge and InformatioSystems、Electronic Commerce Research and Applications等上发表多篇论文,在国际一流学术会议如ACM SIGKDD、IEEE ICDM、SIAM oData Mining (SDM) 、ACM CIKM等发表论文数十篇。获得三次国际会议Best Paper Award奖,获得5项国家发明专利授权。目前是ACM、IEEE等国际学术组织会员以及中国计算机学会高级会员。 为本科生、研究生讲授包括《数据库概论》、《商务智能》、《数据挖掘》、《信息检索》、《计算广告学》、《计算机技术前沿》等课程。
电话: 86-10-62514014
E-mail: hejun@ruc.edu.cn
主要研究方向
数据/文本挖掘、商务智能、社会网络分析、社会计算、大数据管理与分析、个性化推荐系统、知识发现的理论与应用研究。
博士研究生将从事的科研工作及对学生的培养要求
1. 有较强的科研能力,能够熟练阅读数据库/数据挖掘领域的经典论文、当前重要国际会议(SIGMOD、VLDB、ICDE、SIGKDD、ICDM、SDM、CIKM)和重要学术期刊论文,写出高水平的研究综述,能系统地掌握科学研究的基本方法并撰写出高水平的学术论文。
2. 积极参加国家科研项目,提高独立科研能力特别是创新能力,培养团队合作精神。
3. 有较强的工程能力,能够进行系统的分析设计和开发,特别是要通过项目实施,提高设计和实现大型软件的能力。
目前在研的科研项目:
[1] 国家973项目《海量弱可用信息上知识发现、演化与服务的理论和技术研究》.项目编号: 2012CB316205
[2] 国家自然科学基金项目《通过社会化媒体挖掘用户兴趣的方法及应用研究》(项目编号:71272029),
[3] 国家自然科学基金重点项目《网络信息融合与知识服务的理论和方法研究》(项目编号:61033010)
[4] 国家863项目《基于用户兴趣模型的媒体大数据内容整合与可视化技术》(项目编号:2014AA015204)
[5] 国家社科基金重大项目《云计算环境下的信息资源集成与服务研究》(项目编号:12&ZD220)
[6] 国家社科基金重大项目《中华民族伟大复兴的社会心理促进机制研究》(项目编号:13&ZD155)
[7] 国家核高基项目:非结构化数据管理系统之人大部分,项目编号:2010ZX01042-002-002
近期发表论文和著作
1.JuHe, H. Liu, Jeffrey Yu, P. Li, W. He, X. Du. Assessing Single-Pair Similarity over Graphs by Aggregating First-Meeting Probabilities. InformatioSystems. Volume 42, June 2014, Pages 107–122.
2.H. Liu, JuHe, D. Zhu, Charles Ling and X. Du. Measuring Similarity Based oLink Information: A Comparative Study. IEEE Transactions oKnowledge and Data Engineering (TKDE). Volume: 25, Issue: 12, 2013, Page(s): 2823–2840.
3.JuHe, H. Liu, Y. Gu, J. Yan, T. Liu. Scalable and Noise Tolerant Web Knowledge Extractiofor Search Task Simplification. DecisioSupport Systems. Volume 56, Pages 156-167. December 2013. (0167-9236).
4.H. Liu, JuHe, T. Wang, W. Song and X. Du. Combining user preferences and user opinions for accurate recommendation. Electronic Commerce Research and Applications. Volume 12, Issue 1, 2013, Pages 14–23.
5.H. Liu, JuHe, Y. Gu, H. Xiong and X. Du. Detecting and Tracking Topics and Events from Web Search Logs. ACM Transactions oInformatioSystems (TOIS). Volume 30 Issue 4, 2012. No. 21.
6.J. Cui, H. Liu, P. Li, JuHe, X. Du, P. Wang. TagClus: a Random Walk-Based Method for Tag Clustering. Knowledge and InformatioSystems. Volume 27, Issue 2 (2011), Page 193–225.
7. JuHe, H. Liu, B. Hu, X. Du and P. Wang. Selecting Effective Features and Relations for Efficient Multi-relational Classification. Computational Intelligence. Volume 26, Number 3, 2010.
8. H. Liu, X. Wang, JuHe, J. Han, D. Xin, Zheng Shao. Top-dowmining of frequent closed patterns from very high dimensional data. InformatioSciences, 15 March 2009.Volume 179, Issue 7, Pages 899–924.
国际会议论文选列(Refereed Proceedings with high impact)
1.N. Xu. H. Liu, JuHe and X. Du. Selecting a Representative Set of Diverse Quality Reviews Automatically. SIAM International conference oData Mining (SDM2014). April 24-26, 2014, Philadelphia, Pennsylvania, USA.
2.Y. Li, T. Liu, H. Liu, JuHe and X. Du. Predicting Microblog User's Age based oText Information. The 14th International Conference oWeb InformatioSystem Engineering (WISE 2013), Nanjing, China, 2013, Pages 510-515. (Best Challenge Paper Award).
3.T. Wang, H. Liu, JuHe and X. Du. Mining User Interests from informatioSharing Behaviors iSocial Media. The 17th Pacific-Asia Conference oKnowledge Discovery and Data Mining (PAKDD). April 14–17, 2013, Gold Coast, Australia. (Acceptance Rates: 59/344=17%).
4.X. Jiang, H. Liu, JuHe, X. Du. Effectively Grouping Named Entities from Click-Through Data into Clusters of Generated Keywords. The 16th 2Pacific Asia Conference oInformatioSystems (PACIS). July 11–15, 2012, Vientnam.
5.J. Cui, H. Liu, J. Yan, J. He, at el. Multi-view random walk framework for search task discovery from click-through log. Iproceedings of the 20th ACM Conference oInformatioand Knowledge Management (CIKM). Glasgow, UK. 2011. (Acceptance Rate: 20%).
6.Y. Gu, J. Yan, H. Liu, JuHe, L. Ji, N. Liu, Z. Chen. Extract Knowledge from Semi-structured WebSites for Search Task Simplification. Iproceedings of the 20th ACM Conference oInformatioand Knowledge Management (CIKM). Glasgow, UK. 2011. (Acceptance Rate: 20%)
7.P. Li, Jeffrey Yu, H. Liu, JuHe, X. Du. Ranking Individuals and Groups by Influence Propagation. The Pacific-Asia Conference oKnowledge Discovery and Data Mining (PAKDD). Shenzhen, China. May, 2011. (Acceptance rate: 9.7%).
8.P. Li, H. Liu, Jeffrey Yu, JuHe, X. Du. Fast Single-Pair SimRank Computation. SIAM International conference oData Mining (SDM2010). April 29–May 1, 2010. Columbus, Ohio. pp. 571–582. (Best paper award) (Acceptance rate: 82/351=23.36%).
9. H. Liu, H. Yan, W. Li, W. Wei, JuHe, X. Du. CRO: a System for Online Review Structurization. The 14th ACM SIGKDD International Conference oKnowledge Discovery and Data Mining (SIGKDD), 2008, Las Vegas, USA. p1085–1088. (DEMO).
10. Y. Cai, G. Cong, X. Jia, H. Liu, JuHe, J. Lu and X. Du. Efficient Algorithms for Computing Link-based Similarity iReal World Networks. IEEE International Conference oData Mining (ICDM). Miami, FL, December 6-9, 2009, IEEE Computer Society Press. (Acceptance rate: 139/786=17.68%).
11. P. Li, Y. Cai, H. Liu, JuHe and X. Du. Exploiting the Block Structure of Link Graph for Efficient Similarity Computation. The 13th Pacific-Asia Conference oKnowledge Discovery and Data Mining (PAKDD), Bangkok, Thailand. April 27-30, 2009. (Acceptance Rate: 39/338=11.54%).
15. J. Cui, Pei Li, H. Liu, JuHe, X. Du. A Neighborhood Search Method for Link-Based Tag Clustering. The International Conference oAdvanced Data Mining and Applications (ADMA), August, 2009. Beijing, China. p.91-103. (Best research paper award) (Acceptance rate: 39/322=12%).
扫码关注
考研信息一网打尽