1998-2022 ChinaKaoyan.com Network Studio. All Rights Reserved. 沪ICP备12018245号
分类:导师信息 来源:中国矿业大学(徐州) 2020-03-11 相关院校:中国矿业大学(徐州)
个人简介
陈正,男,山东枣庄人。博士,副教授。2004年7月毕业于山东理工大学,获学士学位。2009年10月毕业于西北工业大学凝固技术国家重点实验室,获工学博士学位,师从中科院周尧和院士。2009年12月至今在中国矿业大学材料学院工作;2016-2017年于宾夕法尼亚州立大学访问研究。
科研方向:太空条件下金属材料极端非平衡凝固理论及相关性,立足3D打印的稳定安全的纳米结构材料形成与设计,非晶、高熵等亚稳材料设计及功能性,特种铸造理论及工艺研究。
主要项目:主持国家自然基金面上项目、国家自然基金青年项目、江苏省自然基金面上项目、中国博士后基金项目、江苏省博士后基金项目、国家重点实验室项目、学科前沿专项等项目,参与国家自然基金重大项目1项、自然基金面上项目2项,江苏省产学研转化项目1项;入选中国矿业大学第三批起航计划、第九批青年骨干教师和青年学术带头人,获得江苏省“双创计划”人才项目支持。科研论文:在Acta Mater.、Scripta Mater.、J. All. Compd.、Mater. Sci. Eng. A.等金属材料领域国际知名期刊发表SCI论文46篇,出版英文专著1部,文章总他引300余篇次。
主要获奖:获得陕西省高校科技一等奖、优秀毕设指导教师、优秀班主任等。中国材料研究学会会员、国家自然基金等项目评审专家、Philosophical Magazine Letters等十余种国际期刊审稿专家。
教学:主讲材料工程基础、现代凝固技术、先进材料成型技术及理论等本科及研究生课程,获中国矿业大学教学成果一等奖1项,主编教材1部。指导本科生参加国家大学生创新计划、材料设计大赛项目、江苏省创新创业大赛等并多次获奖。
Email:chenzheng1218@163.com
研究领域
主要从事纳米晶、非晶等亚稳功能材料制备及稳定性研究,金属块体及表面快速凝固理论与技术,特种铸造理论及工艺研究。
主要学术贡献如下:
1 建立了纳米晶粒长大全热-动力学模型。该模型可精确判断纳米晶粒溶质分布的初始状态及其对随后晶粒生长及偏聚的影响。首次提出纳米晶粒生长过程的三阶段:动力学生长阶段;动-热力学转化阶段;热力学稳定阶段。系列成果发表在冶金类一区Acta Mater等期刊上,获得德国哥廷根大学材料学院院长,Acta主编R.Kirchheim教授高度评价。
2 通过极冷、深过冷快速凝固技术及真空热处理技术成功制备高稳定Fe-B纳米晶和Fe-Cu微米晶并深入剖析了快速凝固亚稳相晶粒形成、转变及残余机理。该系列成果发表在一类国际期刊Acta Mater,J. All. Compd等上,评价为成果具有明显创新性。
3 提出并阐明了固态相变中存在的晶粒的正常-异常-正常的交替演变理论。建立了快速凝固中非平衡遗传性在异常及正常晶粒生长与溶质拖拽间产生的本质关联理论。
科研项目
国家自然科学基金(51101169)“高稳定Fe基纳米晶的可控制备及其热稳定机制研究”,2012.1~2014.12
陈正,高性能纳米结构材料一体化设计及溶质共偏聚机理研究,江苏省自然科学基金(BK20141126),项目主持人,10万元,2014.7-2017.6
江苏省博士后科学基金,1401052B,陈正,弱偏析纳米合金的高温稳定性设计及溶质共偏聚机理研究,项目主持人,5万元,2014.7-2016.6
中国博士后科学基金第54批面上资助,一等资助(2013M540475),“高稳定块体Fe基纳米晶的可控制备及其热稳定机制研究” 2013.10~2015.10
纳米多元单相合金中溶质共偏聚及与晶界交互机理研究2014QNA07,10万, 2010-09-01-2013-12-01,中央高校科研业务费
中国矿业大学青年科技基金(2010QNA06)“纳米Fe基合金的极端非平衡凝固及热稳定性研究”,2010.9~2013.9
西北工业大学开放课题(SKLSP201119),纳米Fe基合金的极端非平衡凝固及热稳定性研究,2011.01-2013.12
金属基碳化物材料的矿山机械耐磨损抗腐蚀零部件研究,中国矿业大学盱眙矿山装备与材料研发中心创新基金,CXJJ201305
高性能钢基金属陶瓷螺杆制造技术,江苏省科技创新与成果转化(重大科技支撑与自主创新)专项引导资金,BY2012083
发表论文
[1] Z. Chen, Y.Y. Tang, Q. Tao, Q. Chen, T. Liang, The mechanism of grain growth and thermal stability in Ni-1 at.% Pb alloy, Journal of Alloys and Compounds, 662 (2016) 628-633.
[2] Q. Chen, Z. Chen, F. Liu, R.X. Cui, T. Liang, The investigation of recrystallization developed in the largely undercooled Ni–3 at.% Sn alloy, Journal of Alloys and Compounds, 638(25) (2015) 109–114.
[3] Z. Chen, X.Q. Yang, F. Liu, R.X. Cui, C.H. Zhang, Grain growth and thermal stability in nanocrystalline Fe-B alloys prepared by melt spinning, International Journal of Materials Research, 2015, 106 (5) 488-493.
[4] Z. Chen, Q. Chen, F. Liu, X.Q. Yang, Y. Fan, C.H. Zhang, A.M. Liu, The influence of solid-state grain growth mechanism on the microstructure evolution in undercooled Ni-10at.%Fe alloy, Journal of Alloys and Compounds, 622 (2015) 1086–1092.
[5] Zheng Chen, Yanan Yang, et al, Recalescence effect simulation and microstructure evolution of undercooled Fe82B17Si1 alloy, Acta Metallurgica Sinica, 50(7) (2014) 795-801.
[6] Z. Chen, Y.Y. Tang, Q. Chen, R.X. Cui, F. Liu, Z.H. Zhang, The interrelated effect of initial melt undercooling, solute trapping and solute drag on the grain growth mechanism of as-solidified Ni-B alloys, Journal of Alloys and Compounds, 610 (2014) 561-566
[7] Tao Liang, Zheng Chen, Xiaoqin Yang, Ning Liu, Yanan Yang, Chenlong Duan, Yuemin Zhao, Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy, International Journal of Materials Research, 105 (2014) E 854-860.
[8] Z. Chen, F. Liu, X.Q. Yang, C.J. Shen, Y.M. Zhao, A thermokinetic description of nano-scale grain growth under dynamic grain boundary segregation condition, Journal of Alloys and Compounds, 608 (2014) 338–342
[9] Zheng Chen, Yanan Yang, et al, Research on grain refinement and recrystallization mechanism in undercooled Ni-1at.%Fe alloy, Rare Metal Materials and Engineering, 2014 43(2) 336-340.
[10] 张 乐,陈 正,杨亚楠,唐跃跃,新型Al-Ti-B-Re中间合金对工业纯铝细化工艺设计及细化机理研究,材料导报,27(9) 2013 100-103.
[11] Z. Chen, F. Liu, X.Q. Yang, Y.Z. Chen, C.L. Yang, G.C. Yang, Y.H. Zhou, The interrelated effect of activation energy and grain boundary energy on grain growth in nanocrystalline materials, International Journal of Materials Research (2013) 104 (9); 1–6. (SCI: 2013 241VP, EI: 20114214440946)
[12] *Yang, Xiaoqin; Xu, Shaoping; Chen, Zheng; Liu, Jiongtian Improved nickel-olivine catalysts with high coking resistance and regeneration ability for the steam reforming of benzene REACTION KINETICS MECHANISMS AND CATALYSIS, 108(2), pp 459-472, 2013/4. 期刊论文, SCI, 1. 104(2012)
[13] Zheng Chen, Feng Liu, Xiaoqin Yang, Chengjin Shen, A thermokinetic description of nanoscale grain growth: Analysis of the activation energy effect, Acta Materialia (2012) 60; 4833–4844 (SCI: 2012 987KG, EI: 20123015272291) IF: 3.7550
[14] Zheng Chen, Feng Liu, Xiaoqin Yang, Yu Fan, Chengjin Shen, Analysis of grain growth process in melt spun Fe–B alloys under the initial saturated grain boundary segregation condition, Journal of Alloys and Compounds (2012) 510; 46– 53 (SCI: 2012 841RX, EI: 20114214440946 12830833) IF: 2.2890
[15] Zheng Chen, Feng Liu, Xiaoqin Yang, Chengjin Shen, Yu Fan, Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy, Journal of Alloys and Compounds (2011) 509; 7109–7115 (SCI: 2011 766OM, EI: 20112114009342 ) IF: 2.2890
[16] Zheng Chen, Feng Liu, Xiaoqin Yang, Ning Liu, Chengjin Shen, The effect of non-equilibrium δ/γ transition on the formation of metastable “dendrite core” in undercooled Fe–Cu alloy, Journal of Crystal Growth (2012) 354; 174–180 (SCI: 2013 976SQ, EI: 20123115294337) IF: 1.726
[17] Zheng Chen, Feng Liu and Chengjin Shen, A physical explanation of plateau in velocity vs. undercooling curve using a undercooled dendrite growth model , Advanced Materials Research 189-193 (2011) 3815-3818 (EI: 20111113749791, ISTP收录)
[18] Zheng Chen, Feng Liu, Chengjin Shen, Yu Fan, Comparison between kinetic and thermodynamic effects on grain growth in nano-scale materials , Advanced Materials Research 233-235 (2011) 2439-2442 (EI 20112414059352 12434077, ISTP收录)
[19] *Fan, Yu, Shipway, Philip, Tansley, Geoff, Chen, Zheng Study of effect on tensile stress test from distortion of fibre laser welded Ti6Al4V using FEA International Conference on Advanced Design and Manufacturing Engineering (ADME 2011), 2011/9/16-2011/9/18, pp 1889-1894, Guangzhou, PEOPLES R CHINA, 2011. 会议论文
[20] Z. Chen, F. Liu, K. Zhang, Y.Z. Ma, G.C. Yang, Y.H. Zhou, Description of grain growth in metastable materials prepared by non-equilibrium solidification. Journal of Crystal Growth, 2010, 313: 81~93. (SCI: 2010 695LV EI: 11664044) IF:1.534
[21] Z. Chen, H. F. Wang, F. Liu, W. Yang, Effect of nonlinear liquidus and solidus on dendrite growth in bulk undercooled melts. Trans. Nonferrous Met. Soc. China 20 (2010) 490~494. SCI: 2009581AO EI: 11782176
[22] Z. Chen, F. Liu, H. F. Wang, W. Yang, G. C. Yang, Y. H. Zhou, A thermokinetic description for grain growth in nanocrystalline materials. Acta Materialia, 2009, 57(5): 1466~1475. IF:3.729
[23] Z. Chen, F. Liu, W. Yang, H. F. Wang, G. C. Yang, Y. H. Zhou, Influence of grain boundary energy on the grain size evolution in nanocrystalline materials. Journal of Alloys and Compounds, 2009, 475: 893~897. IF:2.135
[24] Z. Chen, F. Liu, H. F. Wang, W. Yang, G. C. Yang, Y. H. Zhou, Formation of single-phase supersaturated solid solution upon solidification of highly undercooled Fe-Cu immiscible system. Journal of Crystal Growth, 2008, 310: 5385~5391. IF:1.534
[25] Z. Chen, F. Liu, H. F. Wang, G. C. Yang, Y. H. Zhou, The effect of kinetics on the stability under non-equilibrium condition. Materials Science and Engineering A, 2006, 433: 182~189. IF:1.9
[26] Z. Chen, F. Liu, G. C. Yang, Y. H. Zhou, Influence of grain boundary energy on the grain size evolution in nanocrystalline materials. Journal of Physics: Conference Series, 2009, 152: 012086.
[27] Z. Chen, H.F. Wang, F. Liu, W. Yang, Effect of nonlinear liquidus and solidus on the dendrite growth in bulk undercooled melts. Transactions of Nonferrous Metals Society of China, 2010, 20, 490~494.
[28] X.Q. Yang, Z. Chen, W. Yang, Analysis of thermal stability after occurrence of absolute solute trapping in undercooled Co-Cu alloy, International Journal of Materials Research (2013) 104; 783–788. (SCI,EI)
[29] K. Zhang, Z. Chen, F. Liu, C.L. Yang, Thermodynamic state and kinetic process, analysis of grain boundary excess in nano-scale grain growth. J. Alloys and Compounds, 2010, 501: L4~L7. IF:2.135, SCI, EI.
[30] F. Liu, Z. Chen, H.F. Wang, C.L. Yang, W. Yang, G.C. Yang, Thermodynamics of nano-scale grain growth. Materials Science and Engineering A, 2007, 457: 13~17.
[31] H.F. Wang, F. Liu, Z. Chen, G.C. Yang, Y.H. Zhou, Analysis of non-equilibrium dendrite growth in bulk undercooled alloy melt, model and application, Acta Materialia, 2007, 55: 497~506.
[32] H.F. Wang, F. Liu, Z. Chen, W. Yang, G.C. Yang, Y.H. Zhou, Effect of non-linear liquidus and solidus inundercooled dendrite growth: A comparative study in Ni0.7at.%B and Ni1at.%Zr system. Scripta Materialia 2007, 57: 413C41.
[33] H. F. Wang, F. Liu, Z. Chen, W. Yang, Solute trapping model based on solute drag treatment, Trans. Nonferrous Met. Soc. China 20 (2010) 877~881, SCI, EI.
[34] N. Liu, F. Liu, W. Yang, Z. Chen, G.C. Yang, Movement of minor phase in undercooled immiscible Fe–Co–Cu alloys, Journal of Alloys and Compounds 551 (2013) 323–326, SCI, EI.
[35] N. Liu, F. Liu, Z. Chen, W. Yang, G.C. Liquid-phase Separation in Rapid Solidification of Undercooled Fe-Co-Cu Melts, J. Mater. Sci. Technol. 2012, 28(7), 622-625. SCI, EI.
[36] F. Liu, H.F. Wang, Z. Chen, W. Yang, G.C. Yang, Determination of activation energy for crystallization in amorphous alloys. Materials Letters, 2006, 60: 3916~3921.
[37] 王海丰, 刘峰, 陈正, 杨根仓, 周尧和, 非平衡凝固条件下耦合弛豫效应的M-S理论, 中国科学E, 37. 5: 674~685.
[38] H.F. Wang, F. Liu, Z. Chen, Dendrite growth model incorporating non-linear liquidus and solidus in bulk undercooled melts, Journal of Central South University of Technology, 2007, 14: 94~100.
[39] H.F. Wang, F. Liu, W. Yang, Z. Chen, G.C. Yang, Y.H. Zhou, Solute trapping model incorporating diffusive interface. Acta Materialia, 2008, 56(4):746~753.
[40] H.F. Wang, F. Liu, W. Yang, Z. Chen, G.C. Yang, Y.H. Zhou, An extended morphological stability model incorporating non-linear liquidus and solidus. Acta Materialia, 2008, 56(11): 2592~2601.
[41] F. Liu, G.C. Yang, H.F. Wang, Z. Chen, Y.H. Zhou. Nano-scale grain growth kinetics, Thermochimica Acta, 2006, 443: 212~216.
出版专著和教材
1 Zheng Chen, Rapid solidification and related solid-state grain growth phenomena Lap LAMBERT Academic Publishing, 2015.
教学活动
主讲课程:研究生课程“先进材料成型技术及理论”,本科生课程“材料工程基础、现代凝固技、材料实验技术”。
获得院讲课比赛二等奖。
指导学生情况
共指导及协助指导研究生10余名:
毕业6名,其中一人获得优秀硕士毕业论文;
在读6名。
共指导研究生发表SCI收录论文8篇。
3人获得中国大学生高分子材料设计大赛三等奖。
扫码关注
考研信息一网打尽